Supplementary Information

Designing polymer nanocomposites with high energydensity using machine learning

Zhong-Hui Shen*, Zhi-Wei Bao, Xiao-Xing Cheng, Bao-Wen Li, Han-

Xing Liu, Yang Shen, Long-Qing Chen, Xiao-Guang Li*, Ce-Wen Nan*

*Corresponding author. E-mail:

zhshen@whut.edu.cn (Z. H. Shen)

lixg@ustc.edu.cn (X. G. Li)

cwnan@mail.tsinghua.edu.cn (C. W. Nan)

This PDF file includes:

Supplementary Text Supplementary Figures 1 to 8 Supplementary Tables 1 to 2 References (1 to 15)

Supplementary Figure 1 Schematic diagram of calculating the energy density of a dielectric from ferroelectric loop.

Polymer	Nanofiller	Breakdown	Maximal
Matrix		Strength	Discharged
		(MV/m)	Energy Density
		()	(J/cm^3)
P(VDF-HFP)	BaTiO ₃ nanoparticle	585.5 ¹	16.5
P(VDF-HFP)	BaTiO ₃ nanofiber	602 ¹	18.5
P(VDF-HFP)	BaTiO ₃ nanoparticle	540 ²	13.0
P(VDF-HFP)	$Pb_{0.97}La_{0.02}(Zr_{0.5}Sn_{0.38}Ti_{0.12})O_3$	316 ³	12.5
	nanoparticle		
PVDF	BaTiO ₃ nanoparticle	450 ⁴	10
P(VDF-HFP)	SiO ₂ nanoparticle	550 ⁵	13
P(VDF-HFP)	Al ₂ O ₃ nanoparticle	600 ⁵	15.8
P(VDF-HFP)	TiO ₂ nanoparticle	500 ⁵	12.5
PVDF	BaTiO ₃ nanoparticle	470 ⁶	18.8
PVDF	PbZr _{0.2} Ti _{0.8} O ₃ nanowire	40 ⁷	1.28
P(VDF-TrFE-	BaTiO ₃ nanofiber	300 ⁸	10.48
CFE)			
PVDF	MoS ₂ nanosheet	200 ⁹	4.1
PVDF	NaNbO3 nanoplatelet	400 ¹⁰	13.5
PVDF	TiO ₂ nanosheet	650 ¹¹	21.1
PVDF	Ba _{0.2} Sr _{0.8} TiO ₃ nanowire	450 ¹²	14.86
P(VDF-HFP)	BaTiO ₃ nanoparticle	164 ¹³	3.2
P(VDF-TrFE-	BN nanosheet	610 ¹⁴	20.3
CFE)			
P(VDF-HFP)	TiO ₂ nanowire	530 ¹⁵	11.48
P(VDF-HFP)	Ca ₂ Nb ₃ O ₁₀ nanosheet	853*	35.9

Supplementary Table 1 Summary of the maximal energy density and breakdown

strength for this work and some state-of-the-art two-phase polymer nanocomposites

*: this work

Supplementary Figure 2 Comparisons of the maximal energy density and breakdown strength for this work and some state-of-the-art two-phase polymer nanocomposites.

	learnin	g	
		Out of plane	Out of plane
Perovskite	Permittivity	Electrical	Electron
Nanosheet		Conductivity	Mobility
		$(S m^{-1})$	$(cm^2 V^{-1} s^{-1})$
Sr ₂ Ta ₃ O ₁₀	175	1×10 ⁻¹⁵	1×10 ⁻¹⁴
$Ca_2Nb_3O_{10}$	213	1×10 ⁻¹⁵	1×10 ⁻¹⁴
$LaNb_2O_7$	50	1×10 ⁻¹⁵	1×10 ⁻¹⁴
$Sr_2Nb_3O_{10}$	240	1×10 ⁻¹⁵	1×10 ⁻¹⁴
Ca ₂ Ta ₃ O ₁₀	47	1×10 ⁻¹⁵	1×10 ⁻¹⁴

Supplementary Table 2 The material parameters used in the prediction of machine

* Due to the lack of accurate electrical conductivity and electron mobility in experiments, a constant empirical value is given in this prediction to represent the high insulativity of perovskite nanosheets.

Supplementary Figure 3 Predicted effective permittivity of polymer nanocomposites with different nanofillers (a) Nanoparticle (b) Vertical Nanofiber (c) Parallel Nanofiber (d) Vertical Nanosheet (e) Parallel Nanosheet.

Supplementary Figure 4 Predicted effective electrical conductivity of polymer nanocomposites with different nanofillers (a) Nanoparticle (b) Vertical Nanofiber (c) Parallel Nanofiber (d) Vertical Nanosheet (e) Parallel Nanosheet..

Supplementary Figure 5 Predicted breakdown strength of polymer nanocomposites with different nanofillers (a) Nanoparticle (b) Vertical Nanofiber (c) Parallel Nanofiber (d) Vertical Nanosheet (e) Parallel Nanosheet.

Predicted Breakdown Strength

Supplementary Figure 6 Scoring of polymer nanocomposites with different nanofillers (a) Nanoparticle (b) Vertical Nanofiber (c) Parallel Nanofiber (d) Vertical Nanosheet (e) Parallel Nanosheet.

Supplementary Figure 7 Ferroelectric loops of polymer nanocomposite P(VDF-HFP)/Ca₂Nb₃O₁₀ with different volume fraction (a) 0.0vol% (b) 0.05vol% (c) 0.1% (d) 0.2vol% (e) 0.3vol%

Supplementary Figure 8 Dielectric performance of polymer nanocomposite P(VDF-HFP)/Ca₂Nb₃O₁₀ (CNO) (a) The breakdown strength and energy density under different CNO volume fraction (b) The charge-discharge efficiency as a function of applied electric field.

References in Supplementary Information:

Zhang, X. *et al.* Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions. *Adv. Mater.* 30, 1707269 (2018).

 Jiang, Y. *et al.* Ultrahigh Breakdown Strength and Improved Energy Density of Polymer Nanocomposites with Gradient Distribution of Ceramic Nanoparticles. *Adv. Funct. Mater.* **30**, 1906112 (2020).

 Zou, K. *et al.* Ultrahigh Energy Efficiency and Large Discharge Energy Density in Flexible Dielectric Nanocomposites with Pb_{0.} 97La_{0.02}(Zr_{0.5}Sn_xTi_{0.5-} _x)O₃Antiferroelectric Nanofillers. *ACS Appl. Mater. Interfaces* 12, 12847-12856 (2020).
Hu, P. *et al.* Topological-Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density. *Adv. Funct. Mater.* 24, 3172-

3178 (2014).

5. Li, H. *et al.* Enabling High-Energy-Density High-Efficiency Ferroelectric Polymer Nanocomposites with Rationally Designed Nanofillers. *Adv. Funct. Mater.*, 2006739 (2020).

6. Wang, Y. *et al.* Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. *Adv. Mater.* **27**, 6658-6663 (2015).

7. Tang, H., Lin, Y. & Sodano, H. A. Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. *Adv. Energy Mater.* **2**, 469-476 (2012).

 Tang, H., Lin, Y. & Sodano, H. A. Synthesis of high aspect ratio BaTiO₃ nanowires for high energy density nanocomposite capacitors. *Adv. Energy Mater.* 3, 451-456 (2013).

9. Jia, Q., Huang, X., Wang, G., Diao, J. & Jiang, P. MoS₂ nanosheet superstructures based polymer composites for high-dielectric and electrical energy storage applications. *J Phys. Chem. C* **120**, 10206-10214 (2016).

10. Pan, Z. *et al.* NaNbO₃ two-dimensional platelets induced highly energy storage density in trilayered architecture composites. *Nano Energy* **40**, 587-595 (2017).

11. Wen, R., Guo, J., Zhao, C. & Liu, Y. Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania. *Adv. Mater. Interfaces* **5**, 1701088 (2018).

12. Tang, H. & Sodano, H. A. Ultra high energy density nanocomposite capacitors with fast discharge using Ba_{0.2}Sr_{0.8}TiO₃ nanowires. *Nano Lett.* **13**, 1373-1379 (2013).

13. Kim, P. *et al.* High energy density nanocomposites based on surface-modified BaTiO₃ and a ferroelectric polymer. *ACS nano* **3**, 2581-2592 (2009).

14. Li, Q. *et al.* Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. *Energ. Environ. Sci.* **8**, 922-931 (2015).

15. Wang, G., Huang, X. & Jiang, P. Mussel-inspired fluoro-polydopamine functionalization of titanium dioxide nanowires for polymer nanocomposites with significantly enhanced energy storage capability. *Sci. Rep.* **7**, 43071 (2017).